
24 R As Un

Neural networks ↑

"its just matrix multiplication"

Perceptions (a type of artificial muson)
- it takes several binary inputs ,,,...,& produces a single binary

output M

ez output

123

· Weights , wi ,W ,
... Wn are rual numbers that express the importance of

the respective inputs to the outputs.

· neuson's output (0 or 1) = if the weighted sum(2wjx) is des
than or greater than some reshold value.

-
a real number that is a paramete
of the neuson

Output = [0 ifW thresholdold W· = [Wjlj

=> in a multi-layer network of perceptions ,
the output from the first

layer is used as input to several other perceptions in the second layes.
↑

"collection of 1st 2 layes
nusons"

->

the perceptions in the second layes make more complex & abstract

level decisions than perceptions in the first layer.
-

perception's bias
,
b = -threshold

output =50utwe
-> Bias can be thought of as how easy it is to get a perception

to output 1. Really big biar means its extremely easy for the

perception to output
I

.

-Sigmoidnevronon their weights & binses cover only a small hang,on

in their output.

-> inputs can take any values blu 0 & 1.

-

output is & /W . x + b) where & is called the sigmoid/
logistic func.

& (2)=Fez
- The output of a sigmoid nuson w/ inputs e,2,... weights wi ,

Wa, . . .

and bias b is 1/(1 + exp)- Ewjxj -b)

-> if z is a large positive no. = e
-

= 0 = G(z) =1

-> if z is very negative => e-z- = J(z) 20

The smoothness of a means that small changes

·. ↳Wj in the weights & Ob in bias will produce

O
a small change X output in the output from

newson
.

=> output -output wj + Gouta

it means that output is a linear June of the changes &W; & Ab

in the weights & biases

Thearchitecture of neural networks

- "hidden layer" - not an input or an output
- Feedforward - output from one layer is used as input to

the next layer. There are no loops in the network
, information is

always fed forward ,
never fed back.

- -activationfunc - -its just a func , used to calculate the output

of neuson (node)

-radientDescent

- for MNIST ,
each training input , I is a 784 dimensional

vertor (28x28 picels) I the "desired" output y is a 10 dimens-

ional vector.

Lastfunc/objectivefund/Los : output of the neusal
↑ network

((w. b)=n 11yx) - all

↑ &mean-squared
number of training inputs essos (MSE)
->

- Il vll means length of vector v

- C(W,
b) is always non-negative & C(w

,
b) = 0 when YD) is

approximately equal to the output ,
a for all inputs x.

- The aim of the training algorithm is to minimize the CCW
,
b) as

a June of weights & biases
,

i. . e . find a set of weights I biases that

makes cost as small as possible which is done using Gradient Descent

->Consider C as a func of two variables
,
v

,
& ↳ as a kind of a

valley & imagine a ball rolling down the slope of the valley. Suppose
we more the ball a small amount V

,
& DV in the v

,
& I dis

4)= wo

-y = wed
->

we have to find a way of choosing DV
,

& V
,

so as

↳ is negative ,

i

.e . choose them so the ball is rolling down into the

valley.
- v =[] Incient of c = xc =

[
-> "Gradient" of a function is a vector that points in the dis" of

greatest rate of increase of the func. VF = I)
- 4c = VC · Dv

-

Dr = -yXC wherea is a small
, positive parametes

known as "learning rates 20

-
- +c = -

n8c . Xc = -H/lVC = C -0 = C will always
decrease if zv = -y

-
current position

-

update rule = v -v = v = nG = if we keep doing this ,
we'll

keep decreasing C until we reach a global minimum.

#Forneural networks
,

the idea is to use gradient descent to find

the weights , we & biases
,

b
,
which minimizes the Cw

,
b).

current- > updated
- update rule = W- w, = wx - nx = wi -n

b, + b) = b ,
-

ne
->

for individual training examples ,(x-alN
N

forn training examples). To compute XC we need to compute

gradients VC, separately for each training input e & then average them

which is computationally long for large noof training inputs.
- StochasticGradientexent (SGD) can be used to speed up learning.

The idea is to estimate gradient VC by computing XC for a small

sample of randomly chosen training inputs.
- algorithm : sandomly pick a small no. M of randomly chosen

training inputs ,4 ,2, em & is referred as mini-batch.

->

for large enough sample size m
, average value of VC~ average

over all VCp

->D=
-

SGD works by picking a randomly chosen mini-batch of training

inputs & training my those
,

W Wi =Wi- d =b

-

then we pick out another sandomly chosen mini-batch & train w
those until we've exhausted all training inputs which is called an

"Yeah" of training.

ackpropagation
- it is used to compute the gradient of the cast function.

·Patric based algorithm to compute output from a neural net

- let W denote the weight for the connection from the R* neuron

in 11-17th layer to the jth muson in Im layer.

- by is the bias of the jth nuson in the 1th layer & & is the

activation of the jth neuson in the 1th layer.
-> the activation as of the jth numson in Ith layes is related to

the activations in the 11-17th layes as :

as = -)zw +b
where the sum is over all nusonsk in the (1-1)th layer.

- in mateix form we define a weight matrix We for each laye
If the entries of we are just the weights connecting to the 1th

I

layer of neusons & the entry in th sow & k column is Wir

for each layer I we define a bias vector
,
ba the components

of bias vector are just by ,
one component for eachneuson in the

eth layer. And finally , an activation vector at whose components
are a?
-applying a func . Such as I to every element in a vector v

is called rectorization denoted asIV) &S (V);
= GIV))

al = (weat- 2
+ bl)

- z1 = wal-1 + b & 21 is called the weighted input to the

neusons in layer I.
-

z=W + b where is the weighted input to

the activation func · For nusonj in layer I.

- The goal of backpropagation is to compute the partial desivati

ves IClaw & ac/ab of the cost function Cw respect to

any weight w or bias b in the network.

- quadratic cost func.=-

where y(x) is daived output & a = @k) is the vector of activations

output from the network whenI is input.
->

cost funch C is a function of the outputs from neusal

network=>> C = ((a)) = 111y()
- ah12 ·

Cis not a

function of(1) as for a fixed training input , x
,
the output

Y is also fixed .

heHadamard Product (Schus
-

-

suppose s & t are two vectors of same dimension than

- t denotes elementwise product of two vectors & (5);
=Sit;

[7(] = [ii] = [3]
- let 8 be the error in the jth neuson in the 1th layer.
- consider a little change2) to the neuson's weighted input

so that instead of outputting &(2;) ,
the neuson outputs -(2) + +2)

This change propagates through lates layers in the network ,

caring the overall cost to change by an amount
-> if 20/22! has a large value then 42 can dower the cost by

having opposite sign to 24223 · But if 04/02) is already close

to zeso then2) can't improve the cost much
. Hence,a

is a measure of error in the neuson.

S =

forerror in the output layer (54

The components are given by ,

=
- 2/29! measures how fast the cost is changing as a func of

the jth output activation . If C doesn't depend on a particular

output neuson ; then S; will be small.

- &(2)) measures now fast the activation func o is changing
at
2 %

-
= (a-

- in matrix form ,
82=a(08%2) - (i)

=>8 = (a - y)08%2Y

-or stin terms of gets

8 = /(We+1) g(+)00(24) - (ii)

where (We+1) T is the transpose of weight matrix weth for the

(d+ 1)th layer.
-

Suppose we know the essor 811 at the (1+1) layer. Applying
the transpose weight matrix ,

(We+) intuctively means moving the

evoor "backward" through the network , giving us measure of the

error at the output of the 1th layer. Then (21) moves the

essor backward through the activation June in layer I , giving
8 in the weighted input to layer I .

->

by using eq"(i) we compute s" then applying (ii) to compute
841 and so on all the way back through the network.

Forrate of change of cost w.r.t. any bias

=S (ii)

-

error S is exactly equal to the rate of change GC/Ob

=

forrate of change of cost w.r.t . any weight

=

= Ain Sout

where Ain is the activation of the neuson input to weight w

& Sout is the error of the neuson output from the weight w.

24zw =

Ain X Sout
&

- when Ain = O
,
the gradient 80 /ow will also be small meaning

the weights will learn slowly. The weights output from low-activations

nuson learn slowly.

-

The 0 June becomes very flat when (2) is approx O or1

& then 0:(2;) = 0
. So the weights in the final layer will

learn slowly if the output newson has either dow or high acti

vations & is said that output newson has saturated since the weight
has stopped learning.

Proofof the four equ

S=
applying chain rule ,S= where sum is

or

a

all neusons k in

the output layer.
- the output activation a of the k

*
neuson depends only on

the weighted input 2 for the jth muson when k = j & so

wa/22% vanishes when k*j.

&
ap = 0(z))

=

=>
=> z =ww
differentiating.w

=W(2)
=> now=

=>
=

=>
- a
= !28

"Thebackpropagation algorithm
1

. Inputx = set the corresponding activation at for the input

layer .

2. Jedforward - for each l = 2 ,
3

...., L compute 21 = weql

+ b and al = &(24)

3.output error 8- compute the vector 8" = Va(08 : 124

4
. Sapropagatethe error -

for each I = -1 ,
L-2

, ...,

compute 8 = ((We++ge+) 8 (ze)

5.utput-the gradient of the cost June is given by

= a and

Thebig picture
- imagine a small change DW to some weight in the net

,

Wit

- that change in weight will cause a change in the output
activation from the corresponding neuson which in turn will cause

a change in all the activations in the next layer. Those change
will cause changes all the way through to final layer & then

in cost function.

& od

f

· &

-

The change TC in the cost is related to the changeW
in the weight by ,

-c=W

-

The change LW causes a small change & in the activation

of the jth newson in the 1th layer which is given by ,

-a?W

-

The change in& will cause changes in all the activati

one in the (1+ 1)th layer . a single one of these activations say ,

act will cause the change,

Data
↓altz

-

a path all the way through the network from W to C
,

with each change in activation causing a change in the next activation

& finally a change in C at the output. If path goes through
activations as , act ... an am then

,

-
- This represents the change in C due to changes in activat

ions along a particular path through network.

-

Every edge between two neurons in the network is

associatedwy a rate factor which is just the partial desivative of

one neuson's activation w. s.t the other neuson's activation.

- The udge from the first weight to the first muson has a

sate factor 29/0W
-

The rate factor of a path is just the product of rate factors

along the path. And total rate of change CCIW, is just the
sum of rate factors of all paths from the initial weight to

the final cost.

Loou-Entropy
-

suppose we've a newson w/ several input variables , 24 , R2 , ...

corresponding weights , Wi , We ,
... and a bias

,
b

29, wi

We
N2 D a = 0(z)

W3

x3
-

The output from the nuson is a = -(2) where z=we
is the weighted sur of the inputs.
- The "cross-entropy" cost function is defined as

,

C =

- [y(a + (1 -y)(n(l - a)]

-> Cox-entropy cost function is non-negative, O as al

the individual terms in the sum are negative since log of the

numbers will range from O to 1.

- if the nuson's actual output is close to the desired output
for all training inputs , I ,

then the cross-entropy = O
. for exam-

Me ,
when y = 0 & a = 0 then Yena-o & Inll-a) = 0.

->

now,-
=2

= (Ly

-((z) = 0(z)(1 - 0(z)

= 10(2)- = (0(2) -y)

- This tells us that the sate at which the weight learns is contr-

olled by 16(2)-y) ,

i

.e . by the error in the output . The larger the

error ,
the faster the neuson will learn.

-> it also avoids learning slowdown caused by 5-(2) in the

eqn 80/aw = (a-y)8(2)x for quadratic cost.

-

(2)= (ie) = (1 + e2)
+

= - (+22)
-

2 (e2)

-

iFe2))Fey
= S(z) (1 - o(a))

-

cron-entropy of a multi-layer network with y = Y1-Yz, ...

as the desired values at the output neusons & AY
, az ,

... are

the actual output values ,

C = - (X;ma! + 11 -y)) m(l - ay)]

- wos-entropy of two probability distributions , P;
& 9;

is

& Plea;
-> for "regression" , I can take values intermediate blu O & 1.

The cross-entropy is then defined ,

c =- [Ymy + 11 - y) (n(l -x)]

and is knownasbinary entropy
->

from information theory , cron-entropy is a measure of

surprise when we learn the true value for Y.

softmax
-

The idea of softmax is to define a new type of output

layer for neural networks.
- instead of applying a sigmoid June to the weighted inputs ,

z ,
we apply the softmax function. The activation of theth

output neuson is
,

a=en
k

where the sum is over all output neusons.

->

↳ = I for softmax activations . The output from the

softmas layer is blu 0 & 1 I can be thought of as a

probability distribution.

->

for softmax layes , any particular output activation a

depends on all the weighted inputs.
-

suppose we've a neusal net with a softmax output layes
& the activations a are known there ,

a= (a) = 2 + In
K

2j = M(ay) + C

-log-likelihoodcost func.

C = -Ma

=-ya(a-

weightdecay/regularization
- the idea is to add an extra term to the cost function called

the "regularization term."

- regularized cross-entropy ,

c =

-;Ma + (1 - x))m(1 - a))] + W

- Iw is the sum of the squares of all the weights in the

network & X is regularization parameter ,
where 20

-> the effect is so that the network prefers to learn small

weights & large weights are allowed only if they considerably
improve the first part of cost June.

-

smallI minimize the original cost June.

->

large x = small weights

=

b + b -
w - w -

/
=

(1 - MX/n)w -n
-> the rescaling factor (1-MX/n) is called weight decay since it

makes the weights smalles.

- small weights lowes complexity
-

regularized networks are constrained to build relatively simple
models based on patterns seen often in the training data ,

and are resistant to learning pecularities of the noise in the

training data& thus
, generalize better from what they learn .

↳I regularization
C = Cot

where Ilw/ is the sum of absolute values of weights.

= syn

where sgn(w) is the sign of w
,
that is ,I if w is positive

& -1 if negative.

+ we = w - Sgn(w) -

n
= w(l-) -

n
-> in both 11 & 12 the intuition is to penalize larges weights
-> in LI

,
the weights shrink by a constant amount toward O

while in 12 the weights shrink by an amount proportional to w

- when a particular weight has large magnitude (w) , 12

shrinks the weight much less than 12 & vice-versa for

when Iwl is small.

- 11 tends to concentrate the weight of the network

in a relatively small no . of high-importance connections
, while

the other weights are driven toward zero.

-

Hessian technique
-> consider a cost func C which is a func of many variables ,

W = is We s..., so C = C(W)

by Taylor's theorem ,

((w + (w) = C (w)+ W,

OWDW
((w + +w) = c(w) + VC . ow+How ...

- H is a "Husian" mateix
,
whose jkth term is 80/2Wi

W = A
+
VC

thm :

-> choose a starting point , W.

- update w to we = W - H"VC
,
where H & XC are

computed at w.

-

update we to W" = W - H ""T'C where the Ho &V

are computed at W.....
- This approach to minimizing a cost June. is called "Messian

optimization"

Aanhfunc

tanh(2)=
- (12) anh(212) (tanh(2) is just a rescaled

version of -(2)

↳U toucifiedlinear unit)
N

mas (0
,2)

- output = max /0
,
w . x + b)

! &

